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A cellular automaton is constructed that simulates the response of a one-dimensional dynamical
Burridge-Knopoff model for earthquake occurrence. The central element of the model involves an ap-
proximation to the momentum overshoot of the static equilibrium state in the dynamic case. The model
gives satisfactory comparison with, and a reduction in computation by 10N relative to, histories of syn-
thetic seismicity using the dynamic model, when a reasonable choice of overshoot is selected. Solutions
that use the “standard” quasistatic automaton, in which the final state of stress is set equal to the dynam-
ic friction, give less satisfactory agreement. Thus momentum overshoot is an important factor in regu-
lating earthquake self-organization and cannot be ignored in any accurate simulation of earthquake his-

tories.

PACS number(s): 05.45.+b, 91.30.Px, 62.20.Mk, 02.70.—c¢

Efforts to model seismicity as a problem in the physics
of the self-organization of a complex dynamical system
have focused on a threshold dynamics that divides time
in a piecewise manner into slow and fast intervals [1].
The state of stress at the end of the fast time episode is an
initial condition for the determination of the time, place,
and size of future fracture events, under conditions of
uniform, slow loading in slow time. In quasistatic models
of seismicity the final state of stress is specified by as-
sumption to be the dynamic friction [1,2], which it is dur-
ing the slip episode itself. In dynamic models [3-5] the
final state of stress is the end product of the solution to a
problem in dynamics; in these cases, the final stress usual-
ly overshoots the dynamic friction, a consequence of the
process of healing of the fracture. Healing takes place
progressively due to the finite time for the propagation of
stress waves [6] across the fracture. The momentum of
the part of the fracture that continues to slip generates an
overshoot stress which appears at the moving boundary
between the healed and slipping parts of the fracture.
The dynamical models are evidently more computational-
ly demanding.

To investigate the importance of the dynamics of heal-
ing on the simulation of long-term evolutionary seismici-
ty, we study the overshoot of the final stress state which
depends crucially on the process of cessation of slip. In
quasistatic models there is no provision for accommoda-
tion to the problem of the cessation of slip; in the dynam-
ics, cessation of slip appears naturally. In the dynamic
models, the final state of stress can be significantly
different from that usually assumed in the ad hoc quasi-
static models due to the differential momentum effects de-
scribed above.

While there are a number of quasistatic models that de-
scribe earthquake fractures as the propagation of a series
of dislocations, only a few models simulate the formation
of extended cracks, much less their dynamics. Crack and
dislocation versions of iterative quasistatic models of
fracture give dramatically different histories of seismicity
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[1]. To date, quasistative models have not been iterated
successfully because of a failure to make a provision for
healing [7], or because of restrictive assumptions con-
cerning runaways and the reset after runaways [1,8]. (See
[9] for a discussion of the influence of initial conditions
and reset conditions after runaways on the seismic histo-
ry of a model system.) We focus on the more realistic
models of earthquake fractures as extended cracks with
correlations of slip along the fracture surface.

In many models the assumption is made that the
transfer of stress takes place through nearest-neighbor
coupling as a static or dynamic cellular automation, in-
stead of through the agency of the long range forces of
elasticity; we do not try to redress this assumption in this
paper. Although it is not to be expected that any simula-
tion that involves short range stress transfer will replicate
the natural paradigm, nevertheless it should be possible
to assess the relative importance of introducing dynamics
into these models, and that is what we propose to do in
this paper. We compare quasistatic and dynamic extend-
ed crack models with nearest-neighbor coupling in both
cases, by describing a quasidynamic model with a tunable
parameter that controls the amount of overshoot; in the
case of zero overshoot, we recover the quasistatic as-
sumption. We demonstrate that, aside from other
deficiencies that may prohibit a simulation from replicat-
ing the earthquake paradigm, any model that claims to
simulate earthquake activity properly must account for
the way in which the dynamics of rupture and healing
can influence the final state of stress across the ruptured
fault.

We offer a set of automation rules that can be used to
develop self-organizing, extended-crack models of itera-
tive earthquake phenomena. While our rules bypass the
dynamics, they are derived from a consideration of the
dynamics of extended fractures, with special attention be-
ing paid to the final overshoot state of stress. In our
quasidynamic model we simulate the overshoot property
in as general a way as possible without actually solving

5675 ©1995 The American Physical Society



5676

the dynamics of the complex system; the model can be
iterated easily. By comparing the dynamic crack model
with the quasidynamic model derived from it, we adduce
the importance of dynamic overshoot in regulating earth-
quake self-organization. Since the dynamic crack models
are much more computationally intensive than their qua-
sistatic counterparts, our quasistatic model with ap-
propriate overshoot will provide computational relief
while preserving the requisite element of the dynamics.
Our vehicle for constructing a more appropriate quasi-
static model is the one-dimensional dynamic Burridge-
Knopoff (BK) [3] model, in which an earthquake is con-
sidered to be a dynamically evolving, extended fracture in
fast time. The dynamic slip u, between the walls of a
homogeneous one-dimensional earthquake fault at a
discrete lattice site n is the solution to the coupled ODEs

mii, +kQu,—u, _—u, )+, ‘tan,=f, , (1)

where the velocity of sound in the continuum is
(k/m)"2a, and a is the lattice spacing. Knopoff, Lan-
doni, and Abinante [5] have given an argument for choos-
ing @=2(Im)!’?, and give details of an efficient and accu-
rate method of calculation. We seek an approximate
solution to the above dynamic equations for the slip U,
at the end of any fracture event. We approximate U, by
the solution to (1) in its static form by deleting the time-
dependent terms

kQQU,—U,_ 1= U, )+IU,=f,(1+¢y), @)

where ¢, is an overshoot factor that depends on the
length of the crack N, assumed to be the same for all par-
ticles. If there is no frictional damping (a=0), the
overshoot factor is ¢y =1 for all N. In the usual quasi-
static approximation, the final force is taken to be the
static force (stress) drop, and ¢, =0 for all N.

J

A — Cosh(N+1— lp—g|)Yp—cosh(N+1—p—q)¢

P4 2 sinhy sinh(N + 1)y
and where
S
coshy=1+ K

We especially note the force at the end of the fractured
chain,

> fe(1+¢y)sinh(N +1—q)¢
—_4a

kU, sinh(N + 1)y ’ D
Without loss of generality, we can set the dynamic fric-
tion on each particle to zero. Our algorithm is as follows.
(1) Increasing the driving stress slowly at a constant
rate by increasing the force T, on all particles uniformly
until the difference between the fracture strength B, and
the force is zero at some site; fracture is initiated at this

site. Weset f, =T, at the time of fracture.
(2) The crack grows progressively starting from a crack
of length 1. Assume the crack has grown to a length N.
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We assume that at some instant in the dynamical phase
of fracture growth the length of the crack is N, i.e., N lat-
tice sites are slipping. We number the lattice sites in
motion from one end, n=1, 2,...,N. To find an ap-
proximate value for ¢,, we assume that the displacement
during fracture is in the lowest mode of the solution to
(1), an assumption that has been shown to be valid with
high accuracy in our numerical solutions of dynamical
lattice models for selected distributions of threshold frac-
ture strength and static stress drops. In this case, the
solution to (1) is

u, «sin(nya)[1—cos(Qt)]e ~(*/2m) 3)

where Q=2(k /m)'/*sin(y,a/2), and 7, is the wave
number in the pth mode,

__pT
YT N+ e

Under the freezing condition #, =0, the duration of the
rupture is

m/2
i 172
[ - sin(y,a /2)
Thus the overshoot factor is
; 172 P
= —|£ __m/e .
éy =exp k i . ; (4)
2(N +1)
the case N > > 1 can be derived as an obvious limit.
The solution to (2) is
kU,=M,,f,(1+¢y), (5)

where

(6)

[

Number the broken elements from 1 to N starting from
one end.

(3) Solve for the forces at the ends of the crack
(kU,kUy) from (7). If either or both of the inequalities

kUl >(B0_To) and kUN>(BN+1-TN+1)

are satisfied, then the length of the crack is increased to
(N—+1)or (N +2). Return to step (2).

(4) If neither inequality in step (3) is satisfied, this frac-
ture event is assumed to have terminated. Set the final
state of stress to —f,¢y for fractured sites and
(To+kU,,Ty4++kUy) for the unbroken sites at the
ends. Set T, =f, for all the other sites. Return to step
(1).

In Figs. 1 and 2 we compare the results of dynamic
simulations (1) on a BK model with the quasidynamic al-
gorithm (5) for three values of ¢y in each case: the
values are ¢y, given by (4); ¢, =1, which is the max-
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FIG. 1. Seismicity on a homogeneous one-dimensional BK
fault model with periodic boundary conditions. The static fric-
tion is inhomogeneous, as shown at the right; the ratio of max-
imum to minimum friction is 5. Vertical strokes indicate the
length of an individual fracture. The time scale is the same for
all simulations: 3000 events are displayed in all cases (a) Dy-
namic case. (b) Quasidynamic case with overshoot given by Eq.
(4). (c) Maximum overshoot ¢y =1. (d) Quasistatic case with
zero overshoot.

imum possible overshoot; and ¢, =0, which is the quasi-
static approximation of no overshoot. The parameters
for all four simulations in each figure are the same. The
time scales are the same in each figure.

In Fig. 1 we display a simulation of 3000 events for the
case [/k =0.25, i.e., a=1, and k=m =1. All lattice
sites have the same properties, except for the distribution
of fracture strengths, which is inhomogeneous as shown
at the right; we use periodic boundary conditions. The
problem is similar to that described in [5]. We display
the space-time history of fractures; the vertical strokes in
these displays represent the linear extent of the fractures
without regard to the energy or moment released in the
events. The localization in this model has been discussed
in [5]. The reproduction of the dynamical result in Fig.
1(a) is of highest fidelity if the quasidynamic algorithm is
used [see Fig. 1(b)]. The result with the quasistatic algo-
rithm with no overshoot [Fig. 1(d)] is a poor reproduction
of the dynamical result. Inspection of Fig. 1(c) shows
that the case with too much overshoot ¢, =1 gives a
better fit than the quasistatic case of zero overshoot.

Similar conclusions are reached in the second set of ex-
amples (Fig. 2), which is a study of a relatively smooth
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FIG. 2. Seismicity on a fault model as in Fig. 1, but with
spiky inhomogeneous frictions as shown at right; the ratio of
maximum to minimum frictions is 5 as before, and the frictions
in the valleys vary between 1.0 and 1.2. The high density of
events in (d) is due to the comparative absence of short frac-
tures.

frictional system, punctuated by a series of spiky barriers
of high fracture strength. Again we use periodic bound-
ary conditions. The localization in this model has a
significantly different character from that of the preced-
ing figures; the dynamic solution [Fig. 2(a)] shows that
the system tends to develop fractures that tear from bar-
rier to barrier; these localized or characteristic events are
frequently interrupted by stronger events that tear
through the barriers. There are significant episodic shifts
in the frequency of repetition of characteristic events lo-
cally. As before, the quasidynamic model with overshoot
given by (5) gives the best reproduction [Fig. 2(b)], while
the standard quasistatic model with zero-overshoot [Fig.
2(d)] gives the poorest results.

We find that the quasidynamic model with zero
overshoot performs poorly in the simulation of iterative
fractures in comparison with the dynamic model,
whereas, with an appropriate choice of overshoot, the
quasidynamic model reproduces with surprising qualita-
tive accuracy the dynamic earthquake history. This is ac-
complished with an approximately 10N-fold decrease in
computing time over the dynamic equivalent model,
where N is the lattice size of the largest ruptures that we
model. These results lead us to conclude that overshoot
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due to dynamic healing is critically important in deter-
mining earthquake self-organization, and must be
reckoned with in any effort to accurately model the phys-

ics of earthquake phenomena. Though the scaling of

stress with distance from the fracture is not properly
simulated in BK models with nearest-neighbor coupling,
nevertheless the implications of the demonstration in this
paper is that quasistatic models that take into account
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continuum elasticity will have to model overshoot ap-
propriately as well.
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